viernes, 26 de septiembre de 2014

Simuladores de red

Simulador de red


-Tipos de simuladores de redes

Omnet++
OMNeT++ es un simulador modular de eventos discretos de redes orientado a objetos, usado habitualmente para modelar el tráfico de redes de telecomunicaciones, protocolos, sistemas multiprocesadores y distribuidos, validación de arquitecturas hardware, evaluación del rendimiento de sistemas software y, en general, modelar cualquier sistema que pueda simularse con eventos discretos.
Esta herramienta esta disponible tanto para sistemas operativos basados en UNIX como para Windows y se distribuye bajo la Licencia Pública Académica. Su versión comercial, denominada OMNEST, es desarrollada actualmente por Opensim Ltd.
El sistema de simulación de OMNeT++ provee un núcleo de simulación que contiene las rutinas que controlan las simulaciones y las bibliotecas de simulación, e interfaces de usuario que son usadas para la construcción de modelos y ejecución de simulaciones.
Un modelo en OMNeT++ consiste básicamente de la descripción de la topología del modelo en el lenguaje NED, la definición de mensajes y el código de los módulos simples. Los modelos en OMNET++ tienen una estructura modular. Existen objetos básicos con una funcionalidad básica a partir de los cuales se componen módulos complejos formando una estructura jerárquica anidada.

SSFNet

 
SSFNet es una herrramienta para análisis, simulación y modelado de redes escalables de alto rendimiento . SSFNet consta de 3 componentes básicos:
*Un marco de simulación escalable (SSF) programado en en Java y C++ y de código abierto.
*Un lenguaje para modelar la red que se desea simular (DML) con una sintaxis y una grámatica propia. También de código abierto.
*Un entorno de desarrollo integrado (IDE) que agrupa el conjunto de herramientas para construir el modelo de red fácilmente. En este caso no todas las herramientas son de libre distribución.
Es en esta última parte donde se distribuyen cómo código abierto, en Java, el modelado de algunos protocolos de la capa de red y transporte como IP, TCP, UDP, OSPF y BGP, dónde se implementa el funcionamiento de dispostivos de red como Router, o las capas de enlace de redes LAN.


VisualSense



VisualSense es un editor y simulador de sistemas de redes de sensores inalámbricos. Forma parte del proyecto Ptolemy II que es un entorno software de código abierto para la simulación y programación de eventos discretos, redes de procesos, etc.

NS
ns es un simulador de redes basado en eventos discretos.
Se usa principalmente en ambientes educativos y de investigación. Permite simular tanto protocolos unicast como multicast y se utiliza intensamente en la investigación de redes móviles ad-hoc. Implementa una amplia gama de protocolos tanto de redes cableadas como de redes inalámbricas. La versión actual, ns-3, esta diseñada para soportar todo el flujo de trabajo de lasimulación desde la configuración hasta la recolección y análisis de tramas.
ns es software libre, se ofrece bajo la versión 2 de la GNU General Public License. Cuenta con dos versiones ns-2 y ns-3 que en general son incompatibles.
ns-2 fue desarrollado en C++ y provee una interfaz de simulación a través de OTcl, una variante Orientada a Objetos de Tcl. El usuario describe una topología de red por medio de scripts OTcl, y luego el programa principal de ns-2 simular dicha topología utilizando los parámetros definidos. ns -2 esta diseñado para sistemas operativos Linux, FreeBSD,Solaris, Mac OS X y puede ejecutarse bajo Windows utilizando Cygwin. Fue licenciado bajo GPL versión 2.
La última versión, 2.34, se presentó al público el 17 de junio de 2009.

-Para que se utiliza Packet tracer

Packet Tracer es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de CiscoCCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.
Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practicar y aprender por descubrimiento.
Packet Tracer 6.0 es la última versión del simulador de redes de Cisco Systems, herramienta fundamental si el alumno está cursando el CCNA o se dedica al networking.
En este programa se crea la topología física de la red simplemente arrastrando los dispositivos a la pantalla. Luego clickando en ellos se puede ingresar a sus consolas de configuración. Allí están soportados todos los comandos del Cisco OS e incluso funciona el "tab completion". Una vez completada la configuración física y lógica de la net, también se puede hacer simulaciones de conectividad (pings, traceroutes, etc) todo ello desde las misma consolas incluidas.
Una de las grandes ventajas de utilizar este programa es que permite "ver" (opción "Simulation") cómo deambulan los paquetes por los diferentes equipos (switchs, routers, etc), además de poder analizar de forma rápida el contenido de cada uno de ellos en las diferentes "capas".
Soporta los siguientes protocolos:
  • HTTP, TCP/IP, Telnet, SSH, TFTP, DHCP y DNS.
  • TCP/UDP, IPv4, IPv6, ICMPv4 e ICMPv6.
  • RIP, EIGRP, OSPF Multiárea, enrutamiento estático y redistribución de rutas.
  • Ethernet 802.3 y 802.11, HDLC, Frame Relay y PPP.
  • ARP, CDP, STP, RSTP, 802.1q, VTP, DTP y PAgP, Polly Mkt.
Nuevos recursos, actividades y demostraciones:
  • OSPF, IPv6, SSH, RSTP, Frame Relay, VLAN's, Spanning Tree, Mike mkt etc.
No soporta IGRP y los archivos hechos con Packet Tracer 5 no son compatibles con las versiones anteriores.

-Ventana de packet tracer (partes)

A) Interfaz Standard
2._Interfaz_standar.png


1) Nuevo / Abrir / Guardar / Imprimir / Asistente para actividades.
2) Copiar / Pegar / Deshacer.
3) Aumentar Zoom / Tamaño original / Reducir Zoom.
4) Dibujar figuras (cuadrados, círculos y líneas).
5) Panel de Dispositivos Personalizados: Sirve para agregar o quitar dispositivos personalizados.

B) Herramientas

3._Herramientas.png1) Puntero. Sirve para seleccionar cualquier item o área en el escenario.

2) Sirve para mover el escenario.

3) Sirve para hacer anotaciones en el escenario.


4) Borrar del escenario un item.

5) Muestra las tablas del dispositivo (enrutamiento, NAT, ARP, MAC, etc.).


6) Inyecta tráfico simple (ping) de dispositivo a dispositivo.

7) Inyecta tráfico complejo (IP destino, TTL, intervalos, HTTP, Telnet, SNMP).




C) Dispositivos

4._Dispositivos.png


1) Routers: Muestra en el panel 9) los modelos de routers disponibles.
2) Switchs: Muestra en el panel 9) los modelos de switchs disponibles.
3) Hubs: Muestra en el panel 9) los modelos de hubs disponibles.
4) Dispositivos Wireless: Muestra en el panel 9) los modelos de dispositivos Wireless disponibles.
5) Medios: Muestra en el panel 9) los medios (serial, fibra, consola, etc) disponibles.
6) Dispositivos Finales: Muestra en el panel 9) los dispositivos finales (impresora, host, server, etc.) disponibles.
7) Emulación WAN: Muestra en el panel 9) las diferentes emulaciones WAN (DSL, módem, cable, etc.) disponibles.
8) Dispositivos Personalizados: Muestra en el panel 9) los diferentes dispositivos personalizados disponibles.
9) Panel de Dispositivos Seleccionados: Muestra los dispositivos disponibles según nuestra selección para utilizar en la topología. Se hace click en el dispositivo que deseamos utilizar y luego click en la parte del escenario que queremos ubicar nuestro dispositivo.

D) Tráfico

5._Trafico.png

1) Crea escenarios para las diferentes PDU.
2) Muestra los resultados de las diferentes PDU.
3) Abre una ventana que muestra las transacciones de diferentes PDU en tiempo real. 

-Como crear una LAN en packet tracer




viernes, 12 de septiembre de 2014

Topologias de redes



Topologias de redes:


                               Bus: 
Una red en bus es aquella topología que se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.
Ventajas: 
● Si algo se daña, o si una computadora se desconecta, esa falla es muy barata y fácil de arreglar.
● Es muy barato realizar todo el conexionado de la red ya que los elementos a emplear no son costosos.
● Los cables de Internet y de electricidad pueden ir juntos en esta topología.
Desventajas:
● Si un usuario desconecta su computadora de la red, o hay alguna falla en la misma como una rotura de cable, la red deja de funcionar.
● Las computadoras de la red no regeneran la señal sino que se transmite o es generada por el cable y ambas resistencias en los extremos
● En esta topología el mantenimiento a través del tiempo que hay que hacer es muy alto (teniendo en cuenta el esfuerzo de lo que requiere la mano de obra).
● La velocidad en esta conexión de red es muy baja.


                             Anillo:
Esquema de la topología de red anillo
Una topología de anillo se compone de un solo anillo cerrado formado por nodos y enlaces, en el que cada nodo está conectado solamente con los dos modos adyacentes. Los dispositivos se conectan directamente entre sí por medio de cables en lo que se denomina una cadena margarita. Para que la información pueda circular, cada estación debe transferir la información a la estación adyacente.
Ventajas: 
● Fácil de instalar y reconfigurar.
● Para añadir o quitar dispositivos , solamente hay que mover dos conexiones.
● Arquitectura muy compacta, y muy pocas veces o casi nunca tiene conflictos con los otros usuarios.
● La conexión provee una organización de igual a igual para todas las computadoras.
● El rendimiento no se declina cuando hay muchos usuarios conectados a la red.
Desventajas:
● Restricciones en cuanto a la longitud del anillo y también en cuanto a la cantidad de dispositivos conectados a la red.
● Todas las señales van en una sola dirección y para llegar a una computadora debe pasar por todas las del medio.
● Cuando una computadora falla, altera a toda la red.


                            Estrella:
Tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco. Se utiliza sobre todo para redes locales.
Ventajas: 
● A comparación de las topologías Bus y Anillo, si una computadora se daña el cable se rompe, las otras computadoras conectadas a la red siguen funcionando.
● Agregar una computadora a la red es muy fácil ya que lo único que hay que hacer es conectarla al HUB o SWITCH.
● Tiene una mejor organización ya que al HUB o SWITCH se lo puede colocar en el centro de un lugar físico y a ese dispositivo conectar todas las computadoras deseadas.
Desventajas:
● No es tan económica a comparación de la topología Bus o Anillo porque es necesario más cable para realizar el conexionado.
● Si el HUB o SWITCH deja de funcionar, ninguna de las computadoras tendrá conexión a la red.
● El número de computadoras conectadas a la red depende de las limitaciones del HUB o SWITCH.
La topología Estrella nació gracias a la tecnología informática. Es una de las mejores sin lugar a dudas debido a su organización...

                              Árbol:
La topología de árbol combina características de la topología de estrella con la de bus. Consiste en un conjunto de subredes estrella conectadas a un bus. Esta topología facilita el crecimiento de la red.
La topología de árbol combina características de la topología de estrella con la de bus. Consiste en un conjunto de subredes estrella conectadas a un bus. Esta topología facilita el crecimiento de la red.
Ventajas: 
 ·Tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores.

  • Permite priorizar las comunicaciones de distintas computadoras. 
  • Se permite conectar más dispositivos gracias a la inclusión de concentradores secundarios. 
  • Permite priorizar y aislar las comunicaciones de distintas computadoras. 
  • Cableado punto a punto para segmentos individuales. 
  • Soportado por multitud de vendedores de software y de hardware. 
  • Desventajas:
    ·Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.
    ·Se requiere más cable. 
    ·La medida de cada segmento viene determinada por el tipo de cable utilizado. 


    ·Si se viene abajo el segmento principal todo el segmento se viene abajo con él. 


                                 Telaraña:
    Las topologías de telaraña están inmediatamente con el concepto de rutas. A diferencia de todas las topologías anteriores, los mensajes enviados en una red de telaraña pueden tomar cualquiera de las muchas rutas posibles para llegar a su destino.
    Algunos WANs (Redes de Cobertura Amplia), como el internet emplean las rutas de telaraña. En cada parte de la telaraña existe un equipo de cómputo el cual recibe y envía información

    Ventajas:

    • Es posible llevar los mensajes de un nodo a otro por diferentes caminos.
    • No puede existir absolutamente ninguna interrupción en las comunicaciones.
    • Cada servidor tiene sus propias comunicaciones con todos los demás servidores.
    • Si falla un cable el otro se hará cargo del tráfico.
    • No requiere un nodo o servidor central lo que reduce el mantenimiento.
    • Si un nodo desaparece o falla no afecta en absoluto a los demás nodos.
    • Si desaparece no afecta tanto a los nodos de redes.
    Desventajas:

     Su principal desventaja es que funciona con pocos ordenadores debido a que están conectados físicamente y si la cantidad de ordenadores es muy grande las conexiones serían abrumadoras es por ello que solo se utiliza en redes pequeña
    · Es más costosa que las demás topologías debido a que utilizan mayor cantidad de cableado.

    · La cantidad necesaria de cables puede ser mayor que el espacio disponible para acomodarlos.

    · Tanto su instalación, configuración y mantenimiento son muy difíciles debido a que los ordenadores deben estar conectados entre sí.

    · Su reparación se puede tornar difícil debido a que son complicadas para detectar su conexión por parte del servicio técnico.

    · Como su instalación es difícil y su costo elevado, se han presentados casos en donde las implementaciones no cubren los enlaces necesarios construyendo así una red malla incompleta.


    · Baja eficiencia de las conexiones o enlaces, debido a la existencia de enlaces redundantes.


    Tipos de cable y técnicas.


    Tipos de cables para redes alambricas:

    Los cables de red son aquellos alambres que permiten conectar a las computadoras entre sí o a terminales de redes y es por medio de estos que los bits se trasladan. Existen numerosos tipos de cables de red, que se pueden agrupar en las siguientes categorías:
    Cable coaxial: estos cables se caracterizan por ser fáciles de manejar, flexibles, ligeros y económicos. Están compuestos por hilos de cobre, que constituyen en núcleo y están cubiertos por un aislante, un trenzado de cobre o metal y una cubierta externa, hecha de plástico, teflón o goma.
    A diferencia del cable trenzado (que se explicará a continuación) resiste más a las atenuaciones e interferencias. La malla de metal o cobre se encarga de absorber aquellas señales electrónicas que se pierden para que no se escapen datos, lo que lo hace ideal para transmitir importantes cantidades de estos a grandes distancias. Los cables coaxiales se pueden dividir en Thinnet, que son cables finos, flexibles y de uso sencillo. Por otro lado, están los cables gruesos, llamados Thicknet. Estos resultan más rígidos y su núcleo es más ancho que el anterior, lo que permite trasferir datos a mayores distancias. Los cables thicknet resultan más difíciles de instalar y usar, así como también son más costosos, pero permite transportar la señal a mayores distancias. Ambos cables cuentan con un conector llamado BNC, para conectar los equipos y cables.
    Los cables coaxiales son ideales para transmitir voz, datos y videos, son económicos, fáciles de usar y seguros.
    cable coaxial redes
    Cables de par trenzado: estos cables están compuestos por dos hilos de cobre entrelazados y aislados y se los puede dividir en dos grupos: apantallados (STP) y sin apantallar (UTP). Estas últimas son las más utilizadas en para el cableado LAN y también se usan para sistemas telefónicos. Los segmentos de los UTP tienen una longitud que no supera los 100 metros y está compuesto por dos hilos de cobre que permanecen aislados. Los cables STP cuentan con una cobertura de cobre trenzado de mayor calidad y protección que la de los UTP. Además, cada par de hilos es protegido con láminas, lo que permite transmitir un mayor número de datos y de forma más protegida. Se utilizan los cables de par trenzado para LAN que cuente con presupuestos limitados y también para conexiones simples.
    Cables de par trenzado redes
    Cables de fibra óptica: estos transportan, por medio de pulsos modulados de luz, señales digitales. Al transportar impulsos no eléctricos, envían datos de forma segura ya que, como no pueden ser pinchados, los datos no pueden ser robados. Gracias a su pureza y la no atenuación de los datos, estos cables transmiten datos con gran capacidad y en poco tiempo.


    Técnica de comunicación en redes inalambricas:


    Wireless Personal Area Network (WPAN)


    En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1);ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.
    El alcance típico de este tipo de redes es de unos cuantos metros, alrededor de los 10 metros máximo. La finalidad de estas redes es comunicar cualquier dispositivo personal (ordenador, terminal móvil, PDA, etc.) con sus periféricos, así como permitir una comunicación directa a corta distancia entre estos dispositivos.
    Hoy en día se dispone de una variedad de dispositivos personales: al ordenador se ha unido el teléfono móvil y, más recientemente la PDA (Personal Digital Assistant). Tradicionalmente, la comunicación de estos dispositivos con sus periféricos se ha hecho utilizando un cable.
    No obstante, tener pequeños dispositivos repletos de cables alrededor no resulta muy cómodo, por lo que la comunicación inalámbrica supone un gran avance en cuanto a versatilidad y comodidad.
    Impresorasauricularesmódemescánermicrófonosteclados, todos estos dispositivos pueden comunicarse con su terminal via radio evitando tener que conectar cables para cada uno de ellos.

    Wireless Metropolitan Area Network (WMAN)

    Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

    Wireless Wide Area Network (WWAN)

    Una WWAN difiere de una WLAN (Wireless Local Area Network) en que usa tecnologías de red celular de comunicaciones móviles como WiMAX (aunque se aplica mejor a Redes WMAN), UMTS (Universal Mobile Telecommunications System), GPRSEDGECDMA2000GSMCDPDMobitexHSPA y 3G para transferir los datos. También incluye LMDS yWi-Fi autónoma para conectar a internet.1

    lunes, 8 de septiembre de 2014

    Métodos de transmisión de datos

    Según la manera de la transmisión:

    -Banda base
    En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de demodulacion se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de la multiplexacion y después de la demultiplexacion y demodulación. Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. Por ejemplo, es señal de banda base la obtenida de la salida de video compuesto de dispositivos como grabadores/reproductores de video y consolas de juego, a diferencia de las señales de televisión que deben ser moduladas para poder transportarlas vía aérea (por señal libre o satelite) o por cable.
    -Banda ancha
    se conoce como banda ancha a la red (de cualquier tipo) que tiene una elevada capacidad para transportar información que incide en la velocidad de transmisión de ésta.1 Así entonces, es la transmisión de datos simétricos por la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión. Así se utilizan dos o más canales de datos simultáneos en una única conexión, lo que se denomina multiplexación (véase sección más abajo).

    Según la información:

    -Asincrona
    La transmisión asíncro da lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código. También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. En estas situaciones tampoco se necesita garantizar un ancho de banda determinado, suministrando solamente el que esté en ese momento disponible. Es un tipo de relación típica para la transmisión de datos. En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
    -Sincrona
    La transmisión síncrona es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
    Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).

    Según el método de transmisión:

    -Serie 
    Es el envío de datos bit a bit sobre una interfaz serieEn una conexión en serie, los datos se transmiten de a un bit por vez a través del canal de transmisión. Sin embargo, ya que muchos procesadores procesan los datos en paralelo, el transmisor necesita transformar los datos paralelos entrantes en datos seriales y el receptor necesita hacer lo contrario. 
    Conexión en serie


    -Paralelo
    Las conexiones paralelas consisten en transmisiones simultáneas de N cantidad de bits. Estos bits se envían simultáneamente a través de diferentes canales N(un canal puede ser, por ejemplo, un alambre, un cable o cualquier otro medio físico). La conexión paralela en equipos del tipo PC generalmente requiere 10 alambres. Es el envío de datos de byte en byte, sobre un mínimo de ocho líneas paralelas a través de una interfaz paralela, por ejemplo la interfaz paralela Centronicspara impresoras.
    Conexión paralela

    Según las señales transmitidas:

    -Analógica
     estas señales se caracterizan por el continuo cambio de amplitud de la señal. En ingeniería de control de procesos la señal oscila entre 4 y 20 mA, y es transmitida en forma puramente analógica. En una señal analógica el contenido de información es muy restringida; tan solo el valor de la corriente y la presencia o no de esta puede ser determinada.

    -Digital 
    estas señales no cambian continuamente, sino que es transmitida en paquetes discretos. No es tampoco inmediatamente interpretada, sino que debe ser primero decodificada por el receptor. El método de transmisión también es otro: como pulsos eléctricos que varían entre dos niveles distintos de voltaje. En lo que respecta a la ingeniería de procesos, no existe limitación en cuanto al contenido de la señal y cualquier información adicional.